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INTRODUCTION 

PRISMATIC cylinders with inner circular concentric holes find 
use in many process industries. For heat transfer purposes it 
is of interest to know the heat flow rate through the walls of 
these cylinders. Several papers have been published on the 
determination of shape factors for this problem [l-4]. How- 
ever, most of these are valid only for cylinders with holes of 
small radii, Smith ef al. [l] correlated electric analogue results 
for a hollow square cylinder. Their correlation is valid for 
cylinders of small radius/apothem ratio and is useful up 
to a ratio of about 0.80. Other workers have developed 
approximate analytical solutions, notably, Balcerzak and 
Raynor [2], who based their solution on approximate map- 
ping and point matching on the outer boundary. Laura and 
Susemihl [3] developed a similar solution using conformal 
mapping. Both methods give nearly identical results which 
are accurate only up to a radius/apothem ratio of about 0.8 
for the case of a hollow square cylinder. Dugan [4] developed 
a much more accurate solution using the boundary residual 
technique. This solution, however, requires the solution of 
simultaneous equations whose number must be increased as 
the inner hole radius increases to improve accuracy. Conse- 
quently, the method requires a computer to solve the equa- 
tions. 

In this paper an approximate analytical expression for 

evaluating the conduction shape factors of hollow prismatic 
cylinders is derived. The method is based on the ‘parallel 
flux tube’ heat flow model developed in circular cylinder 
coordinates. The equation is valid for cylinders having both 
small and large inner holes. The accuracy of the results 
improves with increasing hole size. Therefore, the expression 
gives accurate results for cylinders with large holes : this is 
the region where existing simple solutions are inaccurate or 
fail, 

PROBLEM STATEMENT 

Consider long prismatic cylinders of uniform thermal con- 
ductivity and a concentric circular hole as shown in Fig. 1. 
It is required to determine the heat transfer rate through the 
walls of the cylinders when the boundaries are maintained 
at uniform temperature r, and To. Steady state heat transfer 
rate per unit length, Q can be expressed as 

where 
I 

S’G 

is the conduction shape factor which depends on geometry 

To 

opothem 

FIG. 1. Temperature distribution and flow lines in long hollow regular prismatic cylinders. 
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NOMENCLATURE 

(In 6/p)‘:* 

l/J2 
a function as defined in the text 
thermal conductivity 
number of sides of polygon 
heat flow rate per unit length of cylinder 
thermal resistance 
radial coordinate 
thermal resistance of a flux tube 
lower bound of the thermal resistance 

R,, upper bound of the thermal resistance 
S conduction shape factor per unit length (I/kR) 
S, lower bound of the conduction shape factor 
T temperature. 

Greek symbols 

P radius of the inner circular hole 
6 the apothemdefined as the perpendicular 

distance from the centre to a side of the polygon 
H angular coordinate. 

only, R is the thermal resistance and k is the thermal con- 
ductivity. Knowledge of the shape factor would therefore 
allow one to compute the heat transfer rate easily. 

SOLUTION 

The conduction shape factor for long prismatic hollow 
cylinders can be expressed in the general form [l-3] 

(2) 

where Fis a function of the number of sides of the polygon. 
This equation, however, gives poor results, for cylinders with 
large diameter holes, when F is determined by the current 
approximate methods [l-3]. A better approximate analytic 
solution is developed below which results in a different, but 
much more accurate form of the equation for determining 
this conduction shape factor. 

APPROXIMATE ANALYTICAL SOLUTION 

The resistance of an element of an isotropic homogeneous 
material to uniform one-dimensional heat flow can be ex- 
pressed as 

Resistance = 
Flow distance 

(Fl ~ (3) 
ow area x thermal conductivity) 

When this definition is applied to cylinders in which heat is 
considered to flow in the radial direction only, an element of 
the form shown in Fig. 2(a) is used. The elemental heat flow 
distance is dr and the elemental flow area is r d0 per unit 
length. The resistance of the element to heat flow can then 
be expressed as 

dR=&. 

A flux tube consists of the elements added in series radially 
(Fig. 2(b)). The resistance of the flux tube is 

dR, = s ” dr 
,, krd0 

where r, and r? are the inner and outer radii of the flux tube. 
This equation can be rewritten as 

The flux tubes are arranged in parallel by integrating in the 
angular direction. This gives the total resistance of a sector 
(Fig. 2(c)) as 

(7) 

where t7, and O2 are the angular limits of the sector [5]. The 

FIG. 2(a). Element in cylindrical coordinates. 

FIG. 2(b). Flux tube 

To & ./‘Ti 
OL-__ 

‘i 
8 

‘0 ’ 

FIG. 2(c). Parallel flux tubes. 

resistance R, in equation (7), as shown in ref. [7], is the upper 
bound on the resistance in a circular cylinder system [6]. In 
terms of the conduction shape factor it is written as 

where S, is the lower bound on the shape factor of the sector. 
The lower bound on the resistance can be found by inte- 

grating the elements in the angular direction first and then 
radially in series [6, 71. The result is given by 
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FIG. 3. Basic cell. 

kR, = I'$? i . 

when r is dependent upon 0. This is called the ‘parallel 
isotherm model’. In some simple shapes, such as an infinite 
plate or an infinite circular cylinder the two models, equa- 
tions (7) and (9) yield the same resistance. For complicated 
shapes, however, the results of these two models differ [7]. 
There are cases where neither model can be evaluated ana- 
lytically. When they can be evaluated, the two resistances 
bound the actual resistance. The arithmetic mean of the two 
resistance values has been shown to be a good estimate of 
the actual resistance [6. 71. 

It is possible to extend the use of the above models to cases 
where only one can be evaluated. This is done if the actual 
heat flow pattern nearly corresponds to that model. The 
value of the resistance from the model will be nearly equal 
to the actual resistance. The derivation in this paper uses 
this concept and only the upper bound on the resistance is 
evaluated. It is not possible to evaluate the lower bound of 
the resistance of hollow prismatic cylinders because the outer 
boundary is not compatible with the radial flow model. 

To apply equation (8) to regular hollow prismatic cylinders 
a basic cell (see Fig. 3) is defined. The element ABCD is 
common to all regular hollow prismatic cylinders. Applying 
equation (8) to this cell gives 

rn .\ i ~dcoso ,q, 

where zero and n/N are the angular limits, p and G/cos 0 the 
radii and N is the number of sides of the polygon. The 
complete cylinder cross-section contains 2N basic cells. 
Therefore, the lower bound on the shape factor for the hol- 
low prismatic cylinder after carrying out the integration in 
the denominator is 

s “;N 

S, = 2N 
d0 

~~ 
0 In (J/p)-lncos0’ 

(11) 

The integration of the above equation is not easy, it can 
however, be carried out if -In (cos 0) is replaced by 
l/2 sin’ (H/2). This is a combination of the first and second 
terms in its trigonometric series [8]. The equation is then 

s R’N 

S=2N 
d8 

u In (6/p) + l/2 sin* (O/2) 
(12) 

which can be integrated : therefore, the shape factor is given 
as 

(13) 

where A ’ = In (6/p) and B’ = I i2. The subscript L has been 

dropped because equations (12) and (13) give values of the 
shape factor which are slightly greater than the lower bound 
values because of the substitution. 

-AUTHORS’ SOLUTION AND B.EM. 

BALCERZAK AND RAYNORIZI 

60 LAURA AND SUSEMIHL (3) 
0-l --- LOWER BOUND 

8 
+ 50 

RADIUS/APOTHEM RATIO (p/6) 

FIG. 4. Variation of conduction shape factor with radius/ 
apothem ratio for hollow triangular cylinders. 

70- --- LOWER BOUND 

RADIUS /APOTHEM RATIO (p/8) 

FIG. 5. Variation of conduction shape factor with radius/ 
apothem ratio for hollow square cylinders. 
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COMPARISON WITH OTHER WORKS 

The variation of the shape factor as a function of the 
radius/apothem ratio for ratios above 0.7 is given in Figs. 4 
and 5 for a hollow triangular cylinder and hollow square 
cylinder, respectively. The results from the various works are 
in good agreement for radius/apothem ratios below 0.7; 
therefore this region is not plotted. For ratios above 0.8 all 
the previous solutions [l-3] give lower values of the shape 
factor than equation (13). The results were checked against 
values obtained by the numerical boundary element method 
(BEM) and the finite element method (FEM). The two 
numerical methods gave nearly identical results. However, 
the FEM requires post-processing to determine the tem- 
perature gradients at the boundaries while the BEM gives 
these gradients directly, therefore, only BEM results were 
used for further comparison in the rest of the work since they 
were easier to obtain. In both Figs. 4 and 5 the numerical 
results are plotted on the same curve as those of equation 
(13), showing the accuracy of the derived equation. The plots 
of equation (13) were also compared with those plotted by 
Dugan [4] and were seen to be comparable, even for cylinders 
with large inner holes. 

The lower bound from equation (1 l), evaluated numeri- 
cally, is also plotted on both Figs. 4 and 5. The results of 
equation (13) are always above this lower bound showing 
that equation (13) yields shape factor values slightly above 
the lower bound. 

A comparison of the percentage differences between the 
shape factors from the other methods and those from the 
BEM for the hollow square cylinder are shown in Fig. 6. 
The results from refs. [l&3] are seen to be good up to a 
radius/apothem ratio of 0.8 after which their error increases 
rapidly. For very small (p/6 < 0.1) and very large holes 
(p/6 z 0.97), the BEM results become less accurate and can- 
not be used as a datum. The results from refs. [2, 31 and 
equation (13) are more accurate for very small holes, while 
equation (13) has small error for radius/apothem ratio higher 
than 0.97 and its accuracy should improve as the ratio 
approaches one. The argument for this is given in the dis- 
cussion below. 

It is hence seen that equation (13) can be used to determine 
the conduction shape factor for hollow prismatic cylinders 
of any radius/apothem ratio between zero and one. 

For ratios below 0.8 the approximate equations of 
Balcerzak and Raynor [2], Smith er al. [l] or Laura and Susemihl 
[3], which are summarized in Table 1, can also be used. 

- AUTHORS’ SOLUTION lEq.13) 

0.1 0.2 OB 
RADIUS AP%EM :TlCl (p/6) 

1.0 

FIG. 6. Percentage difference of approximate solutions com- 
pared to the numerical BEM solution for hollow square 

cylinders. 

DISCUSSION 

The approximate lower bound of the shape factor from 
equation (13) gives good results because of three facts. 

(1) The heat flow pattern from the hole to the outside 
surface is close to the parallel flux tube model, even for the 
critical case of a triangular cylinder. 

(2) For cylinders with large holes most of the heat goes 
out through the region where the angle c) is small. The value 
of -In cos 8 is nearly equal to l/2 sin’ f3/2 for small angle 0, 
therefore this substitution does not introduce much error. 
As the hole gets larger this region becomes more important 
and the accuracy of equation (13) therefore increases. 

(3) Although the heat flow at the inner circular boundary 
is spread over a large angle 0 when the hole is very small the 
term l/2 sin’ O/2 becomes very small compared to In S/p and 
hence the dependence on 0 is negligible and the solution 
tends to that of a hollow circular cylinder. The flux tubes 
around the hole are essentially parallel and the solution is 
not influenced very much by the outside boundary. 

The results of equation (13) and those from refs. [2, 31 
should improve in accuracy as the number of sides of the 
polygon increases. This is shown in Fig. 7 where the per- 
centage difference between the previous approximate sol- 

Table 1. Summary of approximate equations for determining conduction shape factors of hollow 
prismatic cylinders 

Authors Shape factor S 

Smith et al. [l] ,y= c 
log (~/PI + d 

c = 2.79+0.010 

d = 0.036_+0.007 

Balcerzak and Raynor [2] S= 
2a 

In {6/p cos (x/N)} -A 
N = number of sides of prism 

N A 
3 0.56958 
4 0.27079 
5 0.16068 
6 0.10669 
etc. 

Laura and Susemihl [3] 
2s 

’ = In (,4,6/p) N A, 
3 1.13209 
4 1.07870 
5 1.05246 
6 1.03754 
etc. 
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FIG. 8. Conduction shape factors for prisms with different 
number of sides. 

utions and equation (13) is shown to decrease as the number 
of sides of the cylinder increases for a radius/apothem ratio 
of 0.9 

Figure 8 shows the plots of conduction shape factor as a 
function of various radius/apothem ratios for prisms with a 
different number of sides. The results are generated using 
equation (13). It can be seen that for radius/apothem ratios 
below 0.5 the conduction shape factors for all the prisms 
are nearly equal to that of a circular cylinder. For higher 
radius/apothem ratios, however, the need for a solution such 
as equation (13) is evident. 

SUMMARY 

An approximate equation has been derived for estimating 
the conduction shape factors of long hollow prismatic cyl- 
inders with isothermal boundaries. The derivation is based 
on the ‘parallel flux tube’ heat flow model. It is valid for 
cylinders with any size of inner hole. It is particularly useful 
for calculating shape factors for cylinders with very large 
inner holes. This is the region where existing approximate 
solutions fail or are inaccurate and accurate solutions require 
large computational effort. The results compare well with 
simple approximate solutions by previous workers [l-3] and 
are superior for cylinders with very large inner radii. They 
also agree very well with results obtained numerically by the 
BEM and the FEM. The accuracy of the equation improves 
with increasing inner hole size and also with increase in the 
number of sides of the prismatic cylinders. 

This simple equation can therefore, be used to determine 
shape factors of hollow prismatic cylinders with inner holes 
of any radii. 

Acknowledgements-The authors acknowledge the support 
of the Natural Science and Engineering Research Council of 
Canada under operating grant A7445. L.M.S. acknowledges 
the financial support of the Association of Universities and 
Colleges of Canada through a Canadian Commonwealth 
Scholarship. 

1. 

2 

3. 

4. 

5. 

6. 

7. 

8. 

REFERENCES 

J. C. Smith, J. E. Lind and D. S. Lermond, Shape factors 
for conductive heat flow, A.I.Ch.E. Jl4, 330-331 (1958). 
M. J. Balcerzak and S. Raynor, Steady state heat flow and 
temperature distribution in prismatic bars with isothermal 
boundary conditions, Heat Muss Transfer 3, 113-125 
(1961). 
P. A. Laura and E. A. Susemihl, Determination of heat 
flow shape factors for hollow regular polygonal prisms, 
Nucl. Engng Des. 25,409412 (1973). 
J. P. Dugan, Heat flow in prismatic cylinders with iso- 
thermal boundary conditions, ASME Heat Transfer Div- 
ision, Paper No. 74WA/HT-36 presented at the Winter 
Meeting, New York, 17-22 November (1974). 
M. M. Yovanovich, General expressions for predicting 
conduction shape factors, Progress in Astronautics and 
Aeronautics (Edited by R. G. Hering), pp. 2655291. 
M.I.T. Press. 
H. G. Elrod, Two simple theorems for establishing 
bounds on the total heat flow in steady state heat con- 
duction problems with convective boundary conditions, 
Trans. Am. Sot. mech. Engrs, J. Heat TransJ;r 65 (1974). 
M. M. Yovanovich, Class notes for advanced heat con- 
duction, University of Waterloo (I 983). 
H. B. Dwight, Tables qflntegrals and Other Mathematical 
Data, 4th Edn. Macmillan, New York (196 I). 


